Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21268253

RESUMEN

ImportanceRandomized clinical trials and observational studies have demonstrated high overall effectiveness for the three US-authorized COVID-19 vaccines against symptomatic COVID-19 infection. Nevertheless, the challenges associated with the use of observational data can undermine the results of the studies. ObjectiveTo assess the feasibility of using observational data for vaccine effectiveness studies by examining granular weekly effectiveness. Design, Settings and ParticipantsIn this retrospective cohort study, we used Columbia University Medical Center data linked to State and City Immunization Registries to assess the weekly effectiveness of mRNA COVID-19 vaccines. We conducted manual chart review of cases in week one in both groups along with a set of sensitivity analyses for Pfizer-BioNTech, Moderna and Janssen vaccines. Main Outcomes and MeasuresWe used propensity score matching with up to 54,987 covariates and fitted Cox proportional hazards models to estimate hazard ratios and constructed Kaplan-Meier plots for two main outcomes (COVID-19 infection and COVID-19-associated hospitalization). ResultsThe study included 179,666 patients. We observed increasing effectiveness after the first dose of mRNA vaccines with week 6 effectiveness approximating 84% (95% CI 72-91%) for COVID-19 infection and 86% (95% CI 69-95) for COVID-19-associated hospitalization. When analyzing unexpectedly high effectiveness in week one, chart review revealed that vaccinated patients are less likely to seek care after vaccination and are more likely to be diagnosed with COVID-19 during the encounters for other conditions. Sensitivity analyses showed potential outcome misclassification for COVID-19 ICD10-CM diagnosis and the influence of excluding patients with prior COVID-19 infection and anchoring in the unexposed group. Overall vaccine effectiveness analysis in fully vaccinated patients matched the results of the randomized trials. Conclusions and RelevanceObservational data can be used to ascertain vaccine effectiveness if potential biases are accounted for. The data need to be scrutinized to ensure that compared groups exhibit similar health seeking behavior and are equally likely to be captured in the data. Given the difference in temporal trends of vaccine exposure and baseline characteristics, indirect comparison of vaccines may produce biased results. KEY POINTSO_ST_ABSQuestionC_ST_ABSWhen accounted for all potential biases, what is the weekly effectiveness of COVID-19 vaccines? FindingsIn this cohort study we replicated the results of randomized clinical trials, discovered plausible increase in effectiveness after week one following the first dose of mRNA COVID-19 vaccines and found differences in temporal trends of vaccine exposure and baseline characteristics in vaccinated groups. MeaningObservational data can be used to reliably estimate vaccine effectiveness if the biases are accounted for. Vaccines need to be directly compared.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21264711

RESUMEN

IntroductionObservational data enables large-scale vaccine safety surveillance but requires careful evaluation of potential sources of bias. One potential source of bias is an index date selection procedure for the unvaccinated cohort or unvaccinated comparison time. Here, we evaluate different index date selection procedures for two vaccines: COVID-19 and influenza. MethodsFor each vaccine, we extracted patient baseline characteristics on the index date and up to 450 days prior and then compared them to the characteristics of the unvaccinated patients indexed on an arbitrary date or indexed on a date of a visit. Additionally, we compared vaccinated patients indexed on the date of vaccination and the same patients indexed on a prior date or visit. ResultsCOVID-19 vaccination and influenza vaccination differ drastically from each other in terms of populations vaccinated and their status on the day of vaccination. When compared to indexing on a visit in unvaccinated population, influenza vaccination had markedly higher covariate proportions and COVID-19 vaccination had lower proportions of most covariates on the index date. In contrast, COVID-19 vaccination had similar covariate proportions when compared to an arbitrary date. These effects attenuated but were still present with a longer lookback period. The effect of day 0 was present even when patients served as their own controls. ConclusionPatient baseline characteristics are sensitive to the choice of the index date. In vaccine safety studies, unexposed index event should represent vaccination settings. Study designs previously used to assess influenza vaccination must be reassessed for COVID-19 to account for a potentially healthier population and lack of medical activity on the day of vaccination.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21254315

RESUMEN

BackgroundAs large-scale immunization programs against COVID-19 proceed around the world, safety signals will emerge that need rapid evaluation. We report population-based, age- and sex- specific background incidence rates of potential adverse events of special interest (AESI) in eight countries using thirteen databases. MethodsThis multi-national network cohort study included eight electronic medical record and five administrative claims databases from Australia, France, Germany, Japan, Netherlands, Spain, the United Kingdom, and the United States, mapped to a common data model. People observed for at least 365 days before 1 January 2017, 2018, or 2019 were included. We based study outcomes on lists published by regulators: acute myocardial infarction, anaphylaxis, appendicitis, Bells palsy, deep vein thrombosis, disseminated intravascular coagulation, encephalomyelitis, Guillain-Barre syndrome, hemorrhagic and non-hemorrhagic stroke, immune thrombocytopenia, myocarditis/pericarditis, narcolepsy, pulmonary embolism, and transverse myelitis. We calculated incidence rates stratified by age, sex, and database. We pooled rates across databases using random effects meta-analyses. We classified meta-analytic estimates into Council of International Organizations of Medical Sciences categories: very common, common, uncommon, rare, or very rare. FindingsWe analysed 126,661,070 people. Rates varied greatly between databases and by age and sex. Some AESI (e.g., myocardial infarction, Guillain-Barre syndrome) increased with age, while others (e.g., anaphylaxis, appendicitis) were more common in young people. As a result, AESI were classified differently according to age. For example, myocardial infarction was very rare in children, rare in women aged 35-54 years, uncommon in men and women aged 55-84 years, and common in those aged [≥]85 years. InterpretationWe report robust baseline rates of prioritised AESI across 13 databases. Age, sex, and variation between databases should be considered if background AESI rates are compared to event rates observed with COVID-19 vaccines.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21249672

RESUMEN

PurposeWe aimed to describe the demographics, cancer subtypes, comorbidities and outcomes of patients with a history of cancer with COVID-19 from March to June 2020. Secondly, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. MethodsWe conducted a cohort study using eight routinely-collected healthcare databases from Spain and the US, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: i) diagnosed with COVID-19, ii) hospitalized with COVID-19, and iii) hospitalized with influenza in 2017-2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. ResultsWe included 118,155 patients with a cancer history in the COVID-19 diagnosed and 41,939 in the COVID-19 hospitalized cohorts. The most frequent cancer subtypes were prostate and breast cancer (range: 5-19% and 1-14% in the diagnosed cohort, respectively). Hematological malignancies were also frequent, with non-Hodgkins lymphoma being among the 5 most common cancer subtypes in the diagnosed cohort. Overall, patients were more frequently aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 8% to 14% and from 18% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n=242,960) had a similar distribution of cancer subtypes, sex, age and comorbidities but lower occurrence of adverse events. ConclusionPatients with a history of cancer and COVID-19 have advanced age, multiple comorbidities, and a high occurence of COVID-19-related events. Additionaly, hematological malignancies were frequent in these patients.This observational study provides epidemiologic characteristics that can inform clinical care and future etiological studies.

5.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-874605

RESUMEN

Objectives@#We incorporated the Korean Electronic Data Interchange (EDI) vocabulary into Observational Medical Outcomes Partnership (OMOP) vocabulary using a semi-automated process. The goal of this study was to improve the Korean EDI as a standard medical ontology in Korea. @*Methods@#We incorporated the EDI vocabulary into OMOP vocabulary through four main steps. First, we improved the current classification of EDI domains and separated medical services into procedures and measurements. Second, each EDI concept was assigned a unique identifier and validity dates. Third, we built a vertical hierarchy between EDI concepts, fully describing child concepts through relationships and attributes and linking them to parent terms. Finally, we added an English definition for each EDI concept. We translated the Korean definitions of EDI concepts using Google.Cloud.Translation.V3, using a client library and manual translation. We evaluated the EDI using 11 auditing criteria for controlled vocabularies. @*Results@#We incorporated 313,431 concepts from the EDI to the OMOP Standardized Vocabularies. For 10 of the 11 auditing criteria, EDI showed a better quality index within the OMOP vocabulary than in the original EDI vocabulary. @*Conclusions@#The incorporation of the EDI vocabulary into the OMOP Standardized Vocabularies allows better standardization to facilitate network research. Our research provides a promising model for mapping Korean medical information into a global standard terminology system, although a comprehensive mapping of official vocabulary remains to be done in the future.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20236802

RESUMEN

ObjectivePatients with autoimmune diseases were advised to shield to avoid COVID-19, but information on their prognosis is lacking. We characterised 30-day outcomes and mortality after hospitalisation with COVID-19 among patients with prevalent autoimmune diseases, and compared outcomes after hospital admissions among similar patients with seasonal influenza. DesignMultinational network cohort study SettingElectronic health records data from Columbia University Irving Medical Center (CUIMC) (NYC, United States [US]), Optum [US], Department of Veterans Affairs (VA) (US), Information System for Research in Primary Care-Hospitalisation Linked Data (SIDIAP-H) (Spain), and claims data from IQVIA Open Claims (US) and Health Insurance and Review Assessment (HIRA) (South Korea). ParticipantsAll patients with prevalent autoimmune diseases, diagnosed and/or hospitalised between January and June 2020 with COVID-19, and similar patients hospitalised with influenza in 2017-2018 were included. Main outcome measures30-day complications during hospitalisation and death ResultsWe studied 133,589 patients diagnosed and 48,418 hospitalised with COVID-19 with prevalent autoimmune diseases. The majority of participants were female (60.5% to 65.9%) and aged [≥]50 years. The most prevalent autoimmune conditions were psoriasis (3.5 to 32.5%), rheumatoid arthritis (3.9 to 18.9%), and vasculitis (3.3 to 17.6%). Amongst hospitalised patients, Type 1 diabetes was the most common autoimmune condition (4.8% to 7.5%) in US databases, rheumatoid arthritis in HIRA (18.9%), and psoriasis in SIDIAP-H (26.4%). Compared to 70,660 hospitalised with influenza, those admitted with COVID-19 had more respiratory complications including pneumonia and acute respiratory distress syndrome, and higher 30-day mortality (2.2% to 4.3% versus 6.3% to 24.6%). ConclusionsPatients with autoimmune diseases had high rates of respiratory complications and 30-day mortality following a hospitalization with COVID-19. Compared to influenza, COVID-19 is a more severe disease, leading to more complications and higher mortality. Future studies should investigate predictors of poor outcomes in COVID-19 patients with autoimmune diseases. What is already known about this topicO_LIPatients with autoimmune conditions may be at increased risk of COVID-19 infection andcomplications. C_LIO_LIThere is a paucity of evidence characterising the outcomes of hospitalised COVID-19 patients with prevalent autoimmune conditions. C_LI What this study addsO_LIMost people with autoimmune diseases who required hospitalisation for COVID-19 were women, aged 50 years or older, and had substantial previous comorbidities. C_LIO_LIPatients who were hospitalised with COVID-19 and had prevalent autoimmune diseases had higher prevalence of hypertension, chronic kidney disease, heart disease, and Type 2 diabetes as compared to those with prevalent autoimmune diseases who were diagnosed with COVID-19. C_LIO_LIA variable proportion of 6% to 25% across data sources died within one month of hospitalisation with COVID-19 and prevalent autoimmune diseases. C_LIO_LIFor people with autoimmune diseases, COVID-19 hospitalisation was associated with worse outcomes and 30-day mortality compared to admission with influenza in the 2017-2018 season. C_LI

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20218875

RESUMEN

Early identification of symptoms and comorbidities most predictive of COVID-19 is critical to identify infection, guide policies to effectively contain the pandemic, and improve health systems response. Here, we characterised socio-demographics and comorbidity in 3,316,107persons tested and 219,072 persons tested positive for SARS-CoV-2 since January 2020, and their key health outcomes in the month following the first positive test. Routine care data from primary care electronic health records (EHR) from Spain, hospital EHR from the United States (US), and claims data from South Korea and the US were used. The majority of study participants were women aged 18-65 years old. Positive/tested ratio varied greatly geographically (2.2:100 to 31.2:100) and over time (from 50:100 in February-April to 6.8:100 in May-June). Fever, cough and dyspnoea were the most common symptoms at presentation. Between 4%-38% required admission and 1-10.5% died within a month from their first positive test. Observed disparity in testing practices led to variable baseline characteristics and outcomes, both nationally (US) and internationally. Our findings highlight the importance of large scale characterization of COVID-19 international cohorts to inform planning and resource allocation including testing as countries face a second wave.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20130328

RESUMEN

BackgroundSARS-CoV-2 is straining healthcare systems globally. The burden on hospitals during the pandemic could be reduced by implementing prediction models that can discriminate between patients requiring hospitalization and those who do not. The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision making during the pandemic. However, the model is at high risk of bias according to the Prediction model Risk Of Bias ASsessment Tool and has not been externally validated. MethodsWe followed the OHDSI framework for external validation to assess the reliability of the C-19 model. We evaluated the model on two different target populations: i) 41,381 patients that have SARS-CoV-2 at an outpatient or emergency room visit and ii) 9,429,285 patients that have influenza or related symptoms during an outpatient or emergency room visit, to predict their risk of hospitalization with pneumonia during the following 0 to 30 days. In total we validated the model across a network of 14 databases spanning the US, Europe, Australia and Asia. FindingsThe internal validation performance of the C-19 index was a c-statistic of 0.73 and calibration was not reported by the authors. When we externally validated it by transporting it to SARS-CoV-2 data the model obtained c-statistics of 0.36, 0.53 (0.473-0.584) and 0.56 (0.488-0.636) on Spanish, US and South Korean datasets respectively. The calibration was poor with the model under-estimating risk. When validated on 12 datasets containing influenza patients across the OHDSI network the c-statistics ranged between 0.40-0.68. InterpretationThe results show that the discriminative performance of the C-19 model is low for influenza cohorts, and even worse amongst COVID-19 patients in the US, Spain and South Korea. These results suggest that C-19 should not be used to aid decision making during the COVID-19 pandemic. Our findings highlight the importance of performing external validation across a range of settings, especially when a prediction model is being extrapolated to a different population. In the field of prediction, extensive validation is required to create appropriate trust in a model.

9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20074336

RESUMEN

BackgroundIn this study we phenotyped individuals hospitalised with coronavirus disease 2019 (COVID-19) in depth, summarising entire medical histories, including medications, as captured in routinely collected data drawn from databases across three continents. We then compared individuals hospitalised with COVID-19 to those previously hospitalised with influenza. MethodsWe report demographics, previously recorded conditions and medication use of patients hospitalised with COVID-19 in the US (Columbia University Irving Medical Center [CUIMC], Premier Healthcare Database [PHD], UCHealth System Health Data Compass Database [UC HDC], and the Department of Veterans Affairs [VA OMOP]), in South Korea (Health Insurance Review & Assessment [HIRA]), and Spain (The Information System for Research in Primary Care [SIDIAP] and HM Hospitales [HM]). These patients were then compared with patients hospitalised with influenza in 2014-19. Results34,128 (US: 8,362, South Korea: 7,341, Spain: 18,425) individuals hospitalised with COVID-19 were included. Between 4,811 (HM) and 11,643 (CUIMC) unique aggregate characteristics were extracted per patient, with all summarised in an accompanying interactive website (http://evidence.ohdsi.org/Covid19CharacterizationHospitalization/). Patients were majority male in the US (CUIMC: 52%, PHD: 52%, UC HDC: 54%, VA OMOP: 94%,) and Spain (SIDIAP: 54%, HM: 60%), but were predominantly female in South Korea (HIRA: 60%). Age profiles varied across data sources. Prevalence of asthma ranged from 4% to 15%, diabetes from 13% to 43%, and hypertensive disorder from 24% to 70% across data sources. Between 14% and 33% were taking drugs acting on the renin-angiotensin system in the 30 days prior to hospitalisation. Compared to 81,596 individuals hospitalised with influenza in 2014-19, patients admitted with COVID-19 were more typically male, younger, and healthier, with fewer comorbidities and lower medication use. ConclusionsWe provide a detailed characterisation of patients hospitalised with COVID-19. Protecting groups known to be vulnerable to influenza is a useful starting point to minimize the number of hospital admissions needed for COVID-19. However, such strategies will also likely need to be broadened so as to reflect the particular characteristics of individuals hospitalised with COVID-19.

10.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20054551

RESUMEN

BackgroundHydroxychloroquine has recently received Emergency Use Authorization by the FDA and is currently prescribed in combination with azithromycin for COVID-19 pneumonia. We studied the safety of hydroxychloroquine, alone and in combination with azithromycin. MethodsNew user cohort studies were conducted including 16 severe adverse events (SAEs). Rheumatoid arthritis patients aged 18+ and initiating hydroxychloroquine were compared to those initiating sulfasalazine and followed up over 30 days. Self-controlled case series (SCCS) were conducted to further establish safety in wider populations. Separately, SAEs associated with hydroxychloroquine-azithromycin (compared to hydroxychloroquine-amoxicillin) were studied. Data comprised 14 sources of claims data or electronic medical records from Germany, Japan, Netherlands, Spain, UK, and USA. Propensity score stratification and calibration using negative control outcomes were used to address confounding. Cox models were fitted to estimate calibrated hazard ratios (CalHRs) according to drug use. Estimates were pooled where I2<40%. ResultsOverall, 956,374 and 310,350 users of hydroxychloroquine and sulfasalazine, and 323,122 and 351,956 users of hydroxychloroquine-azithromycin and hydroxychloroquine-amoxicillin were included. No excess risk of SAEs was identified when 30-day hydroxychloroquine and sulfasalazine use were compared. SCCS confirmed these findings. However, when azithromycin was added to hydroxychloroquine, we observed an increased risk of 30-day cardiovascular mortality (CalHR2.19 [1.22-3.94]), chest pain/angina (CalHR 1.15 [95% CI 1.05-1.26]), and heart failure (CalHR 1.22 [95% CI 1.02-1.45]) ConclusionsShort-term hydroxychloroquine treatment is safe, but addition of azithromycin may induce heart failure and cardiovascular mortality, potentially due to synergistic effects on QT length. We call for caution if such combination is to be used in the management of Covid-19. Trial registration numberRegistered with EU PAS; Reference number EUPAS34497 (http://www.encepp.eu/encepp/viewResource.htm?id=34498). The full study protocol and analysis source code can be found at https://github.com/ohdsi-studies/Covid19EstimationHydroxychloroquine. Funding sourcesThis research received partial support from the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC) and Senior Research Fellowship (DPA), US National Institutes of Health, Janssen Research & Development, IQVIA, and by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea [grant number: HI16C0992]. Personal funding included Versus Arthritis [21605] (JL), MRC-DTP [MR/K501256/1] (JL), MRC and FAME (APU). The European Health Data & Evidence Network has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 806968. The JU receives support from the European Unions Horizon 2020 research and innovation programme and EFPIA. No funders had a direct role in this study. The views and opinions expressed are those of the authors and do not necessarily reflect those of the Clinician Scientist Award programme, NIHR, NHS or the Department of Health, England.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...